起订:1
发货:1天内
各种因素对氧化膜硬度和生长速度的影响
铝和铝合金表面上能否生成的硬质氧化膜层,主要取决于电解液的成份浓度,温度,电流密度,及其原材料的成分。
4.1 电解液的浓度
采用硫酸电解液进行硬质阳极氧化时,一般在10%~30%浓度范围内,浓度低时,氧化膜硬度高,特别是纯铝比较明显,但对铜含量较高的铝合金(CY12)例外。因为含铜量较高的铝合金易生成CuAl2的化合物,这种化合物在氧化时溶解速度较快,极易烧毁铝零件。所以一般不适合用低浓度的硫酸电解液,必须在高浓度(H2SO4在 300~400g/L)中进行氧化处理或采用交直流电叠加法处理。
4.2 温度对膜层的影响
电解液温度对氧化膜的耐磨性影响极大,一般来说,如果温度下降,那么铝和铝合金的阳极氧化膜耐磨性能就,这是由于电解液对于膜的溶解速度下降所造成的,为了获得较高硬度的氧化膜。我们要掌握温度在±2℃范围内进行硬质阳极氧化处理为好。
钢制件的表面发黑处理,也有被称之为发蓝处理发黑处理现在常用的方法有传统的碱性加温发黑和出现较晚的常温发黑两种。但常温发黑工艺对于低碳钢的效果不太好。
A3钢用碱性发黑好一些。碱性发黑细分出来,又有一次发黑和两次发黑的区别。发黑液的主要成分是和钠。发黑时所需温度的宽容度较大,大概在135摄氏度到155摄氏度之间都可以得到不错的表面,只是所需时间有些长短而已。实际操作中,需要注意的是工件发黑前除锈和除油的质量,以及发黑后的钝化浸油。发黑质量的好坏往往因这些工序而变化。金属“发蓝”药液
采用碱性氧化法或酸性氧化法;使金属表面形成一层氧化膜,以防止金属表面被腐蚀,此处理过程称为“发蓝”。
黑色金属表面经“发蓝”处理后所形成的氧化膜,其外层主要是四氧化三铁,内层为氧化亚铁。
一、机床行业磷化工艺的现状
磷化是大幅度提高金属表面涂层耐腐蚀性能的一个简单可靠、费用低廉、操作方便的工艺方法。近年来,此方法已被广泛应用于饥床制造巾的防锈、耐磨减摩、冷变形加工润滑和涂漆前打底等各个环节。
1.磷化工艺的分类及特点
机床表面磷化工艺按处理温度的高低分为高温、中温、低温和常温4类。高温磷化(90~98℃)速度快,膜耐蚀,结合力、硬度及耐热性均高,但膜层的挥发性大,成分变化快,结晶不均匀,易形成夹杂;中温磷化(50~70℃)膜均匀,磷化速度较快;低温磷化(25~35℃)无需加热,节省能源,成本低,溶液稳定,膜耐蚀性及耐热性好,但生产效率低;常温磷化(15~35℃)节约能源,一次性投资少,溶液稳定性好。由于常温、低温磷化工艺具有低能耗、低污染和速度快等优点,目前应用较为广泛。
2.磷化工艺的设计和确定
(1)除油除锈 除油除锈好坏直接影响磷化膜质量。除油要求脱脂剂应具有强脱脂能力和极低的泡沫性;脱脂要严格控制脱脂的温度(40~50℃)、浓度(3%~5%)和脱脂时间(工件表面被水湿润为止);除锈以盐酸为宜,通常采用25%稀盐酸。低浓度盐酸挥发速度慢、酸雾少,对操作环境有利,而过高浓度盐酸会形成过腐蚀。为了防止酸洗后的工件泛黄,盐酸浓度也不宜过低,工件水洗后放置时问也不宜过长。另外,酸洗液中应加人适量的除锈加速剂和缓蚀剂,能提高除锈速度,并减缓酸对金属基体的侵蚀。
(2)优选磷化液磷化膜的质量优劣主要表现在晶体粗细和致密程度、表面有无沉淀物,以及膜厚等方面,它们的差异直接影响磷化膜的质量。近年来,磷化处理技术得到了迅猛的发展。目前普遍采用铁系、锌系、锰系及锌钙系磷酸盐溶液进行磷化,其中以锌钙系性能为优异。
阳极氧化处理也适用于镁、钛、钽等金属,其装置中阴极为在电解溶液中化学稳定性高的材料,如铅、不锈钢等。铝在自然环境中,表面会自然形成氧化膜薄层,如经各种不同的表面处理,则可提高其耐蚀性。
阳极氧化膜的生成是两种不同的化学反应同时进行的结果,一种是电化学反应,铝与阳极析出的氧作用生成A12O3;另一种是化学反应,即电解液对A12O3不断地溶解,只有当生成速度大于溶解速度时,才能顺利地在铝及其合金工件表面生成了与铝基体结合牢固的A12O3氧化膜,而这层氧化膜的形成比金属在空气中自然氧化形成的氧化膜具有更好的防腐、耐磨性能。
而且氧化膜性质与铝的性质有很大区别,氧化膜阻挡层的硬度,可超过淬火钢。在润滑条件下由于氧化膜的多孔性,微孔内吸附并存留有润滑油,从而改善了摩擦条件。氧化膜的抗蚀性,尤其是硫酸硬质阳极氧化膜抗蚀性非常好,其抗腐蚀的稳定性比用其他方法得到的高数十倍。用于装饰目的的铝制品还需进行着色处理,利用不同化学染剂产生各种色彩。